

IMPROVEMENT FOR CONTAINER THROUGHPUT IN CONTAINER TERMINAL BY ANALYSIS OF CONTAINER HANDLING DATABASE

T. SHINODA

Department of Marine Systems Engineering, Kyushu University

P. HANGGA

Graduate School of Engineering, Kyushu University Department of Maritime Transportation, ITS - Surabaya

Seminar Nasional Teori dan Aplikasi Teknologi Kelautan (SENTA 2012) 5 Desember, 2012, Surabaya, Indonesia

Background

- Rapid growth in Container transport increases service competitiveness among Container terminals
- Need to measure terminal performance for improving service quality and customer satisfaction

Crucial question :

How to evaluate terminal performance ?? How to improve service quality?? Engineering or Economic Perspective??

Flow of Research

aye

Layout & Operation In HICCT

HICCT : Hakata Island City Container Terminal

PART I : ANALYSIS OF REHANDLING OPERATION

Target for Improvement (Handling Gear)

- RTG (Rubber Tired Gantry Crane)-able to move between lanes
- High stack capability vs Re-handling operation vulnerability

Analysis of Re-handling operation

Based on Daily Work Report Information extracted from HICCT database

Daily work report of Hakata Island City Container Terminal

[Transfer crane No.7]

[Completed work data on 19:07, 13 / July / 2004 (Tue.)]

No.	Operation	G/C	Container No.	Size	From	То	Stock address	Acceptance work time	Completed work time	Wait time	Comments By HiTS	Flag
37	Ship to stock	13	TRLU6698051	40	CY013	C115-4-4	C115-2-3	8:57	9:11	14		Ordinaty completed
38	Rehandling		UGMU8050570	40	C121-1-2	C121-4-2		9:06	9:13	7		O/C
39	Delivery		EISU1316020	40	C121-1-1	TM004		9:06	9:14	8	Reserved	O/C
40	Rehandling		NYKU6057208	40	C113-5-2	C113-4-2		9:09	9:16	7		O/C
41	Delivery		TCKU9410917	40	C113-5-1	IW005		9:09	9:24	15	Reserved	O/C
42	Delivery		EMCU9190948	40	C121-3-2	KM009		9:16	9:28	12		O/C
43	Rehandling		DJLU5201770	40	C119-6-2	C119-5-1		9:14	9:29	15		O/C
44	Delivery		UGMU8991246	40	C119-6-1	IT001	C119-7-3	9:14	9:31	17	Reserved	O/C
45	Delivery		NYKU6112239	40	C127-1-3	MI001		9:26	9:34	8	Reserved	O/C
46	Rehandling		TGHU2538224	20	C130-8-3	C130-7-1		9:16	9:35	19		O/C
47	Delivery		FSCU3157245	20	C130-8-2	HE001		9:16	9:37	21		O/C

Remark ; The abbreviation of O/C means Ordinaty completed.

Queuing time of C/Y + Working time of T/C (except queuing time in front of gate)

- This database is re-constructed to be able to extract more useful information
- Operation work codes list are determined
- Term of processes in T/C operation are defined

Work Codes & Reconstructed Database-1

Operation Work Code

Reconstructed Database

Code Denomi- nation	Operation f	Carried device from/to T/C
1 Receipt	Stack of received container	C/O
2 Delivery	Un-stack for delivery containe	r C/O
3 Ship-to-Stock	Stack of unloaded container	Y/C
4 Stock-to-Ship	Un-stack for loading container to ship	Y/C
5 Shift-In	Stack from other lane/slot	Y/C
6 Shift-Out	Un-stack to other lane/slot,	Y/C
7 Re-handling	Remove the obstacle container above the target container in the same bay	ers None he
8 Spacing	Remove the containers to make space in bay	None
9 Moving	Moving T/C between bays to catch the target container	None
10 Halt	Halt the operation of T/C	None
11 Temporary-In	Temporary stack for loading to	o ship Y/C
12 Temporary-Out	Un-stack of Temporary-In con	tainer Y/C

Remark; T/C: Transfer Crane, C/O: Chassis from outside, Y/C: Yard chassis

No. of container, 13, 707, 37, 3, TRLU6698051, 40, CY, 99, 99, 99, C1, 1 .14 3, F07 38, 7, UGMU8050570, 40, C1, 21, 1, 2, C1, 21, 4, 2, 9, 0 Lane No. 3,T07,39,2,EISU1316020,40,C1,21,1,1,CO,99,99,99,90,06 3,T07,40,9,NYKU6057208,40,C1,13,5,2,C1,13,4,2,9,09,9,10,7 57208,40,C1,13,5,2,C1,13,4,2,9,09,9 Row, Tier No. .2.TCKU9410917.40.C1.13.5.1.CO.99.99 99.9.09.9.24.15 13.T07.41 9.16.9 0/0 2 48,40,C1.21.3.2.CO 2.CO.99.99.999.9.16.9.28.12 13.107.42.2.EMC 13.T07.41 Work No. 7.3.9.14.9.29.15 <u>15201770</u> 40.C1.19.6.2.C1.19 13,T07,43,7,DJLU 40,C1,19,6,2,C1,19,7,3,9,14,9,29,15 14.9.31 17 13,T07,45,9,NYKU6112239,40,C1,27,1,3,CO,99,999999999934,8 13,T07,45,2,NYKU6112239,40,C1,27,1,3,CO,99,9 Check-in time 34.8 13,T07,46,9,TGHU2538224,20,C1,30,8,3,C1,30,7,1,9,16.9.3 13,T07,46,7,TGHU2538224,20,C1,30,8,3,C1,30,7,1,9 13,T07,47,2,FSCU3157245,20,C1,30,8,2,CO,99,99,99,916,9,37,2

Database file by analyzing on daily work report and work code of T/C

Based on this database, we can determine work state transition of T/C

Term of Process in T/C Operation

To provide more detail analysis, step-by-step operation process is defined

Analysis of Reconstructed Database

PART II : SIMULATION BY PETRI NET

Micro Simulation Approach for Detailed Operation

- 1. Examine the Standard Performance Specification of T/C
 - 2. Comparing Standard Time & Real Process Time
 - 3. Construction of Petri Net Simulation Modul

Standard Performance of T/C

- Standard performance is measured by shop test standard container delivery operation
- Standard Process time (T_{si}) defined by

$$Ts_i = \sum_{k \in i} Tc_{ik}(a_k, d_k) + Te_{ik}$$

- T_{Cik} = sub-process time by spreader of T/C in *i*-th process
- of T/C in *i*-th process Te_{ik} = container adjusting time
 - in *i*-th process
- d_k = distance between present position and target position

i = process num.

 a_k = acceleration

k = sub process num.

Comparison of working time (Standard. vs Real Process)

- Both diagram shapes shows good agreement and the delay of operation can be known since real process time graph is mostly behind the standard times
- The reason of this delay is mainly driver's skill which did not able to reached sufficient crane performance speeds.
- Some delay time has been appeared remarkably in the occasion of moving comparably long distance between and in the occasion of adjusting container with crane spreader to chassis (C/Y)

Remarks: Standard time : standard time which is gained by calculation

Process time : real process time which is gained by analysis of constructed database

How far adjustment time vary by frequency

Result of adjusting time that it is calculated by specification and measurement

Number of measurement

Impact of T/C Operator's Skill

How driver's skill influenced T/C performance in real operation

KYUSHU UNIVERSITY

Petri Net Simulation

Petri net is a discrete model that provided constraint such as sequence of event, frequency

Elements of the PN

Place...State, location, information and conditions Transition...State transitions, determine the conditions

Arc...State change flow direction arrows Token... State / activity.

Place No.	State of C/O	Place. No.	Operation of transfer crane		
P1 P3 P4 P6 P8 P1_0	Presence of C/O in front of gate Queue of C/O after pass gate Queue of C/O in vard	P2 P5,P7,P9,P11 P12	Arrival of C/O Possibility of queue of C/O in yard Ready for working of C/O		
P17	End of queueing to load container	Trans. No.	Operation of C/O		
P20	End of loading container	T1 T2,T3,T4,T 5 T6	Moving to yard from gate		
Place No.	State of T/C		Moving to the queueplace Moving to the bay for operation		
P13	End of moving to the bay for operation End of moving the spreader to target container	T1 2	Completion the operation		
P14		Trans. No.	Operation of T/C		
P15 P16 P18 P19	End of rehandling operation End of loading the container to C/O End of lowering the spreader to C/O End of hoisting the spreader from C/O	T7 T8 T9 T1 0 T1 1	Moving to the bay for operation Moving the spreader to target container Carrying out the rehandling operation Lowering the spreader to C/O Hoisting the spreader from C/O		

Simulation Result

Comparison of actual time and a simulation result of transfering process of transfer crane to chassis from outside

Conclusion

- It is possible and convenient to evaluate port performance, particularly in measuring micro operation inside the terminal.
- In this research, RTG/Transfer Crane (T/S) performance were successfully evaluated by means of operation database analysis based on the following procedure
 - Extracting data from daily work DB
 - Reconstructing new DB and extract real process time
 - Analyze the result and determine delay cause (Operator Skill factor in this case)
 - Define skill factor influence by comparing standard and real process time
 - Construct delivery operation model by Petri net
 - Carry out simulation by constructed model and examined the efficiency with real data
- Constructed model is confirmed to be demonstrated the actual operation process appropriately and can be employed to improve efficiency especially for operation evaluation and in planning stage to decide equipment deployment in container terminal.

