

GAINING EFFICIENCY IN CONTAINER HANDLING OPERATION WITH REGENERATIVE POWER CHARGING SYSTEM

P. HANGGA

Graduate School of Engineering, Kyushu University Department of Maritime Transportation, ITS - Surabaya

T. SHINODA

Department of Marine Systems Engineering, Kyushu University

Seminar Nasional Teori dan Aplikasi Teknologi Kelautan (SENTA 2012) 5 Desember, 2012, Surabaya, Indonesia

Background

- Climate change issue
- Container terminal operator need to come up with ideas
- Some handling equipment are used more frequently than the other

Crucial question :

How is environment-friendly technology has been applied? Which part of operation need attention? How to measure the implementation?

Application : Hybrid Straddle Carrier

- Straddle Carrier is the most commonly used for In-Yard operation in medium and large sized container terminal
- Widely used in several major port in USA, Korea, Germany and Japan as a complement to conventional diesel-mechanic S.C

Г

Diesel-electric S/C system diagram

Diesel Electric Type	Diesel Mechanical Type		
Engine	Engine		
↓			
A.C Generator	Torque Converter		
	•		
Inverter	Transmission		
	•		
Motor	Differential		
	•		
Reduction	Reduction		
	•		
Wheel	Wheel		

- Type : Diesel Electric with inverter Acceleration Capability: 30 seconds to reach 20 km/h Traveling capability : 23 km/h (with load), 27 km/h (without load) Hoist/Lowering speed : 280 mm/sec (with load) 400 mm/sec (without load) Other characteristic
 - : Equipped with battery to store regenerative energy by motion

PART I : METHODOLOGY

- 1. Designing S/C movement pattern
- 2. Installation of electric data logger in S/C
- 3. Conversion of electric data into real value

Designing The Experiments (Movement pattern)

- How to measure the impacts of Hybrid S/C operation in energy saving
- Movement pattern were designed for experimental purposes

Designing The Experiments (Data logger)

 Measuring the electrical output → easily separate the output from various range of machinery equipment

Note : Recorded Time interval = 0.2 seconds, Output = voltage resolution of 0.5 mV in the 10 V

Data Conversion to Real Value

- Converted the waveform to show the relation in real value and divided the analysis into lifting & traveling process
- Measured the value for each channel output by ACV (average channel value)

Remarks:

n = total number of data items di = data on channel number i Δt = sampling period M = Max measurement rangeO = Max output voltageACV = Average Channel Value

PART II : MOVEMENT ANALYSIS

- 1. Traveling Analysis
- 2. Hoisting/Lowering Analysis

Traveling Analysis – Fuel Consumption

- 3 kinds of traveling experiments were conducted
 - Exp_1 is for changing in travel speed
 - Exp_2 is for changing in acceleration but maintain traveling motor speed with a container load
 - Exp_3 is similar with Exp_2 only without a container load to S/C.

Traveling Analysis – Regenerative Energy

 Regenerative energy : energy recovery mechanism which slows a vehicle or object down by converting its kinetic energy into electric power and the stored saved in a storage battery and used later to power the motor for another use, such as hoisting, powering air conditioner in the control room and lights.

Impact of Traveling Speed (Pre-Analysis)

Higher Traveling Speed produce more battery charging, mainly during braking

STARTING PHASE

CRUISING PHASE

BRAKING PHASE

Pattern	Speed (km/h)	Battery Usage (-)/ Charge (+) (A)			
		Starting	Cruising	Braking	Total
置き①	10	-6.4	2.0	1.4	-3.0
	20	-2.7	2.2	4.6	4.0
	25	-7.0	5.6	7.8	6.3
置き②	10	-3.2	2.7	4.7	4.3
	20	-0.7	2.7	6.3	8.3
	25	-8.8	5.1	9.2	5.6
置き③	10	-5.4	1.7	1.8	-1.9
	20	-1.4	2.3	3.1	3.9
	25	-7.2	4.6	9.0	6.4

KYUSHU UNIVERSITY

Hoisting/Lowering Analysis

 Measuring correlation between lifting speed and fuel consumption as well as to battery usage/charging with variability in hoisting speed and stacking position

KYUSHU UNIVERSITY

Hoisting/Lowering Analysis – Fuel Consumption

 Lowering and Hoisting operation shows good agreement with normal performance parameter and assumption

Intriguing phenomena : Increase in fuel cons during 2nd Hoisting

Hypothesis : Data might be distorted as 2nd Hoisting is conducted while traveling

Hoisting/Lowering Analysis – Regenerative Energy

Strong correlation between lifting speed and alternate performance parameter of battery utilization

Future issue : Can regenerative energy (lowering) be used to compensate energy usage during hoisting?

Conclusion

- This preliminary study proposes methodology to assess and measure the efficiency of hybrid straddle carrier (Hybrid S/C) in the form of fuel consumption and gained regenerative energy by motions.
 - Combination of data logging instrument, logger utility software and spreadsheet is used to capture electronic output
 - Electric data is successfully converted using the proposed ACV calculation
- Analyzed data show good agreements in relation between traveling speed / lifting speed with either fuel consumption and battery charging
 - Regenerative energy can be gained through the following operation
 - Traveling Braking phase \rightarrow with more traveling speed
 - Lowering operation
- Future research will focus on :
 - Assessing appropriate driving method and movement cycle (GPS and Video Camera)
 - Comparing operational performance of Hybrid S/C and Conventional S/C

